

Predicting Slow Network Transfers in Scientific Computing

<u>Robin Shao</u> at UC Berkeley Jinoh Kim at TAMUC Alex Sim, John Wu at LBNL

- data access performance: a key metrics in scientific computing (scientific computing often requires last-mile access of data)
- "elephant" connections: consume a significant fraction of network
 bandwidth over a long period time
- many studies on high bandwidth connections
- not a lot on low performance network (low throughput)
- throughput is the actual measure while bandwidth is the theoretical measure of how much data could be transferred

Motivations:

- predicted information can be used for optimizing network resources
- understanding low performance network can help identify the underlying problems and prevent unnecessary slow transfers

Build a model to predict the low performance transfers to NERSC

Main sections:

- data exploration
- prediction mechanism
- experimental setting and results

- network data collected between Jan 2019 and May 2021 at NERSC
- Tstat is the format (<u>http://tstat.tlc.polito.it/measure.shtml</u>)
 - Tstat is a log format, in which each row corresponds to a different flow and each column is associated with a specific measure.
 - Client-to-Server (C2S) and Server-to-Client (S2C)
 - combine them together and only care about the origins for incoming connections and destinations for outgoing connections
- DTN1-4 (currently use DTN1 and will extend to other DTNs)

Tstat::Measure

only **2021**:

- the latest data we got
- follow 1 year cycle
- achieved our expectation

only dtn01:

- most transfers
- involved in more "random" transfers

only size > 10^6 bytes:

smaller transfers can hardly be influential

only rtt_min > 1 ms:

- internal transfers
- not record due to the transfer direction

size & throughput

country derived from IP address (GeoIP2) throughput vs. size

- calculate retransmission rate
- rate has higher correlation than size

Data Exploration

other countries are excluded throughput vs. RTT min (RTT avg and max have lower correlation)

Data Exploration

duration vs. size

- 1 megabits per second as the threshold
- 15.5% of the transfers are categorized as low-performance transfers
- also considered duration and retransmission

Feature Engineering

All the new features created:

Table 1: Feature	es defined fo	or prediction
------------------	---------------	---------------

Feature	Description
prev_tput	Latest throughput measured between the same source and destination networks ("a.b.c.0")
prev_size	Latest transfer size (in bytes) between the same source and destination networks ("a.b.c.0")
size_ratio	Ratio between the latest transfer size (prev_size) vs. current transfer size
prev_durat	Latest transfer duration (in msec) between the same source and destination networks ("a.b.c.0")
prev_min_rtt	Latest minimum RTT between the same source and destination networks ("a.b.c.0")
prev_rtt	Latest average RTT between the same source and destination networks ("a.b.c.0")
prev_max_rtt	Latest maximum RTT between the same source and destination networks ("a.b.c.0")
prev_retx_rate	Latest retransmission rate between the same source and destination networks ("a.b.c.0")
time_gap	Time gap from the latest transfer to the current transfer between the same source and destination networks ("a.b.c.0")

only use latest transfer to maintain time efficiency create size_ratio and time_gap to identify similarities between current and previous transfer

Feature Engineering

Some of the important features:

Labels:

create labels with thresholds at 1mbps, 10bps, 100kbps

Features:

- have already had size and country (from IP address)
- created those previous features

Problem:

 binary classification models to predict the low-performance transfers from different data origins to NERSC

Algorithms tried:

decision trees, random forests, SVM, XGBoost, and neural network

will consider deep learning methods like LSTM and transformer

Metrics:

- F1 score
 - a harmonic mean of Precision and Recall
 - F1 = 2 * (precision * recall) / (precision + recall)

Train-test-split:

- train: Jan-April 21
- test: May 21

Baseline model

Intuition:

 If the latest transfer is slow, the current one may also be slow

Feature: prev_tput

Performance:
 0.77

Decision Tree

Compared with **model without new features**: Features: **size, country** F1-score: **0.826** < 0.913

Compared with full **model with all the features**: Features: **all the features available** F1-score: **0.891** < 0.913

new features and feature selection improve the performance

Intuition:

• improving a single tree model by combining it with a number of other tree models in order to generate a collectively strong model

Algo Basics:

- use error residuals of previous model to fit the next model
- final prediction is a weighted sum of all the tree predictions
 Performance (with tuning):

0.913

Input

- Random Forest (with tuning)
- Fully Connected Neural Net
- SVM (Support Vector Machine)

- LSTM (Long Short-term Memory)
- Transformer

- the prediction result presented in throughput vs. size plot
- orange dots are predicted to be non-slow & blue dots are slow
- red line is the boundary

of occurrence in top100 combinations:

- size
- prev_durat
- prev_tput
- prev_rtt_min
- prev_size
- size_ratio
- prev_retx_rate
- country

Contributions:

- got interesting findings through data exploration
- achieved 0.913 F1-score for predicting low performance transfers at 1 Mbps threshold
- achieved as high as 0.945 F1-score at 10 Mbps threshold
- identified important features in determining low-performance transfers

Next Steps:

- explore more advanced algorithms
- explore performance differences on different DTNs in different years

Thanks