

INODE - Intelligent Open Data Exploration

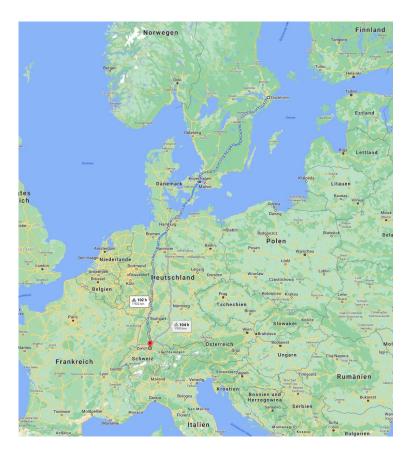
Kurt Stockinger Zurich University of Applied Sciences Switzerland

SNTA Workshop @ 30th International Symposium on High-Performance Parallel and Distributed Computing

June 21, 2021

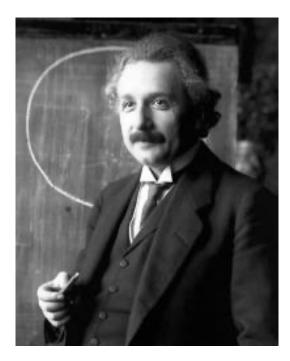
Zurich University of Applied Sciences ZHAW

Switzerland's biggest fully-featured university of applied sciences


Zurich University of Applied Sciences ZHAW

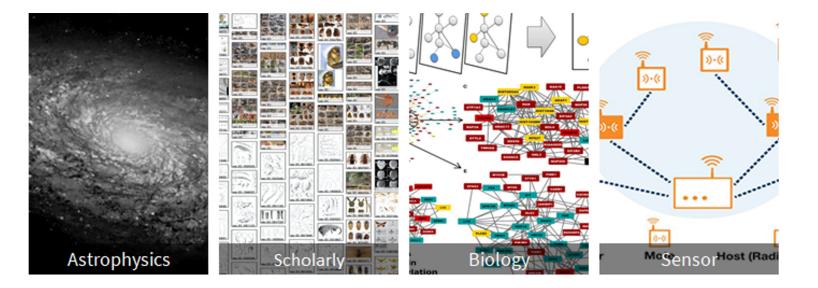
Switzerland's biggest fully-featured university of applied sciences

From Stockholm, Sweden to Zurich, Switzerland it's 1,902 km and it takes 102 hours by bike



Our Most Famous Lecturer

1901: Albert Einstein


Outline

- The Data Promise and the Problem
- Need for Novel Tools to Explore Data
- Experience in Building Systems for Intelligent Data Exploration
 - Bio-SODA: Natural Language to SPARQL without Neural Networks
 - ValueNet: Natural Language to SQL with Neural Networks

The Data Promise

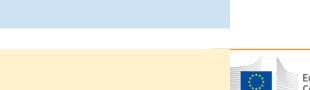
Many different data sets are generated by users, systems and sensors
 Many processes are increasingly more data-driven

Many aspects of our lives are in fact more data-driven

Data is the new oil ... but we need the right tools to leverage it!

Data-Intensive Use Cases

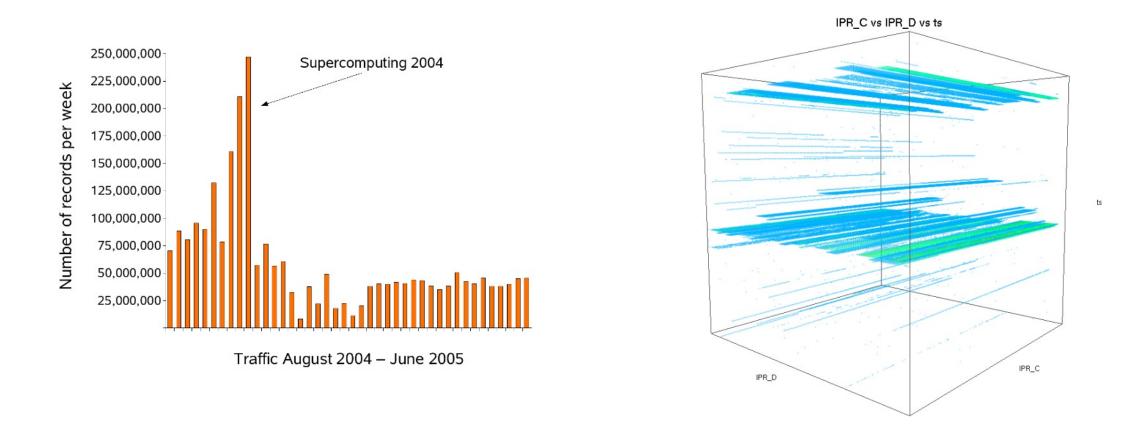
Need for novel approaches and tools to access and understand data


- Astrophysics:
 - Massive amounts of data about galaxies in relational databases to study star formations
 - Understanding hundreds of database tables with thousands of attributes is very hard
- Cancer Biomarker Research:
 - Very complex data sets to allow integration of cancer biomarkers to study cancer types
 - ~50,000 human genes and ~3 million base pairs

Datasets are very hard to analyze for domain experts


- Research & Innovation Policy Making:
 - Many heterogeneous database of EU projects

Datasets are hard to analyze and understand for non-technical experts



Why is this relevant for the distributed systems or network community?

Network Traffic Analysis at Supercomputing in 2006

Stockinger, K., Bethel, E. W., Campbell, S., Dart, E., & Wu, K. (2006). Detecting Distributed Scans Using High-Performance Query-Driven Visualization. In SC Conference.

Network Traffic Analysis

- Very data-intensive
- Need smart way of analyzing data to avoid intrusions
- Problems are "similar" to other data-intensive disciplines

Limitations of Existing Data Exploration Tools 1. INPUT

Form-based interfaces

ime period	Product	Channel	Busines	ss unit	Assigned team
------------	---------	---------	---------	---------	---------------

Low-level query interfaces

General	Write your SQL statement here or use our designer to build it for you. Any SQL statement compatible with your database type and version can be used here.
> Query	
Advanced Options	SELECT 00.id, 00.date,
Data Error Handling	OD.totalamount, CU.name, CU.id,
Q Preview	CU.country, IT.name, IT.sku.
	IT.amount
	FROM [Orders] AS OD JOIN [Items] AS IT
	ON OD.id = IT.orderid
	JOIN [Customer] AS CU ON OD.customerid = CU.id
	WHERE OR.date > '2019-01-01' AND
	<pre>WHERE OD.id > {{ DataAggregate('MyDataset', 'OD.id', 'Max') }}</pre>

• Limited Query Exploration Capabilities

- Knowledge of SQL (or SPARQL, etc)
- Knowledge of the database schema
- Well-formed information needs

¹SQL = Structured Query Language for relational databases ²SPARQL = SPARQL Protocol and RDF Query Language for graph databases

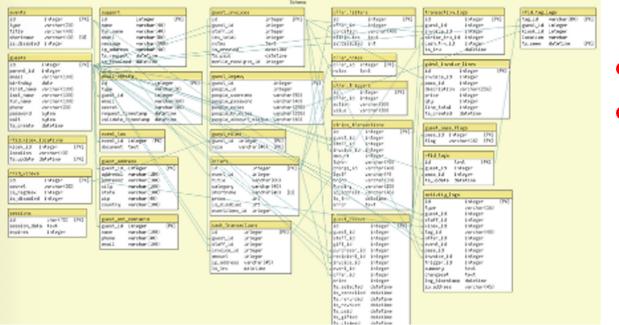
Limitations of Existing Data Exploration Tools 2. OUTPUT

	bl	Δc
Ia	σ	C3

	FirstName	LastName	AddressLine1	City	StateProvinceCode	PostalCode
1	Ren	Miller	101 Candy Rd.	Bedmond	WA	98052
				meanena		
2	Garrett	Vargas	10203 Acorn Avenue	Calgary	AB	T2P 2G8
3	Gabe	Mares	1061 Buskrik Avenue	Edmonds	WA	98020
4	Reuben	D'sa	1064 Slow Creek Road	Seattle	WA	98104
5	Gordon	Hee	108 Lakeside Court	Bellevue	WA	98004
6	Karan	Khanna	1102 Ravenwood	Seattle	WA	98104
7	François	Ajenstat	1144 Paradise Ct.	Issaquah	WA	98027
8	Sariya	Harnpadoungsataya	1185 Dallas Drive	Everett	WA	98201
9	Kirk	Koenigsbauer	1220 Bradford Way	Seattle	WA	98104
10	Kim	Ralls	1226 Shoe St.	Bothell	WA	98011
11	Michael	Raheem	1234 Seaside Way	San Francisco	CA	94109
12	Mike	Seamans	1245 Clay Road	Index	WA	98256
13	Reed	Koch	1275 West Street	Redmond	WA	98052
14	Fadi	Fakhouri	1285 Greenbrier Street	Snohomish	WA	98296
15	Paul	Singh	1343 Prospect St	Bellevue	WA	98004
16	Brenda	Diaz	1349 Steven Way	Seattle	WA	98104
17	Jack	Richins	1356 Grove Way	Monroe	WA	98272
18	John	Evans	136 Balboa Court	Seattle	WA	98104
19	Ken	Myer	1362 Somerset Place	Everett	WA	98201
20	Barbara	Moreland	137 Mazatlan	Seattle	WA	98104

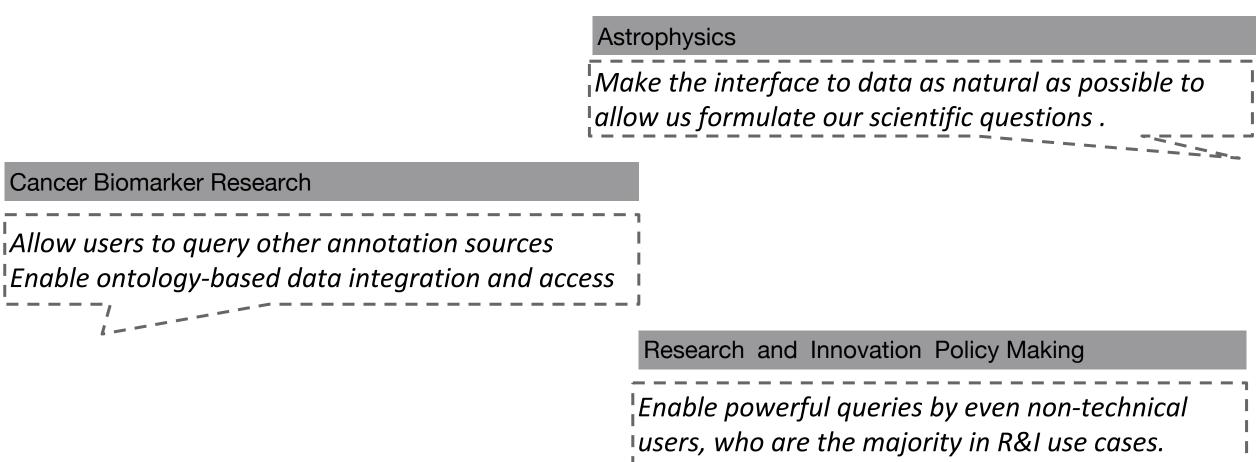
Reports/dashboards

• No interpretation of results


- No explanation of system choices/answers
- No clue how to proceed next

Limitations of Existing Data Exploration Tools 3. DATA

Static, Known Schema


- Hard to find new related sources
- Hard to link and query new related sources

Needs of Scientists and Business Analysts

Need for novel approaches and tools to access and understand data

Requirements/Challenges

1. Data accessibility:

Enable more natural interfaces to data.

1. User guidance:

Offer guidance to users to understand the data and formulate the right queries.

1. Data discovery and linking:

Allow linking and combining data sets to generate rich information and insights.

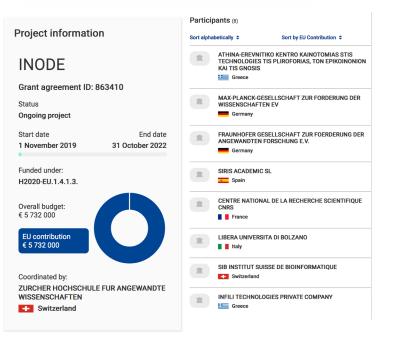
Outline

- The Data Promise and the Problem
- Need for Novel Tools to Explore Data
- Experience in Building Systems for Intelligent Data Exploration
 - Bio-SODA: Natural Language to SPARQL without Neural Networks
 - ValueNet: Natural Language to SQL with Neural Networks

Natural Language Interfaces to Data: Building Data Systems with Academia and Industry

- SODA Search Over Data Warehouse:
 - ("Future ZHAW employee" + Credit Suisse + ETH Zurich)
 - Accessing business data warehouses in natural language
- Bio-SODA:
 - (ZHAW + Swiss Institute of Bioinformatics)
 - Accessing bioinformatics databases in natural language
- NQuest Natural Language Query Exploration System:
 - (ZHAW + Zurich Startup Veezoo)
 - Accessing databases and (partially) machine learning in natural language
- INODE Intelligent Open Data Exploration System
 - (ZHAW + 8 partners in Europe)
 - Exploring structured and unstructured data in natural language

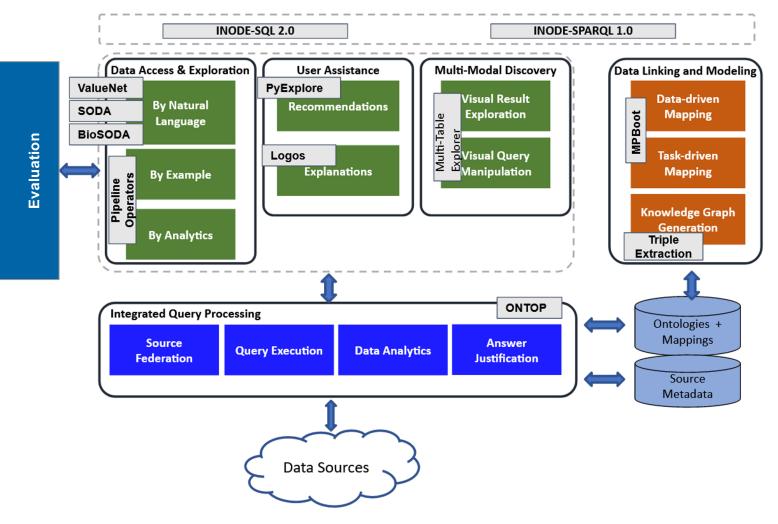
References are given after the conclusions



INODE – Intelligent Open Data Exploration

http://www.inode-project.eu/

- Users should interact with data in a more dialectic and intuitive way similar to a dialog with a human
- Services for exploration of open data sets that help users:
 - Link and leverage multiple datasets
 - Access and **search data using natural language**, using examples and using analytics
 - Get guidance from the system in understanding the data and formulating the right queries
 - Explore data and discover new insights through
 visualizations
 - Focus on Astrophysics, Cancer Biomarker Research and Research & Innovation Policy Making



INODE Architecture

Bio-SODA: Building a Natural Language-to-SPARQL System without Neural Networks

The Current Way of Querying Graph Databases in Bioinformatics

Assume that we have a graph database about drugs and diseases A typical question could be:

- What are the drugs for diseases associated with the brca¹ genes?
- Answering the question would require the following SPARQL² query:

<u>SPARQL q</u>	uery
-----------------	------

SELECT DISTINCT ?diseases ?diseases_label ?drugs ?drugs_label ?genes ?genes_label WHERE {

?drugs <http://www.w3.org/2000/01/rdf-schema#label> ?drugs_label.

?diseases <http://www.w3.org/2000/01/rdf-schema#label> ?diseases_label.

?drugs a <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/drugs>.

?diseases a <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/diseases>.

?drugs <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/possibleDiseaseTarget> ?diseases.

?diseases <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?genes.

?genes <http://www.w3.org/2000/01/rdf-schema#label> ?genes_label.

FILTER (contains(lcase(str(?genes_label)), "brca"))

}

¹brca refers to breast cancer ²SPARQL = SPARQL Protocol and RDF Query Language for graph databases

The Bio-SODA Way of Querying Graph Databases

BioSODA (search over databases - QALD-4 prototype)

Go

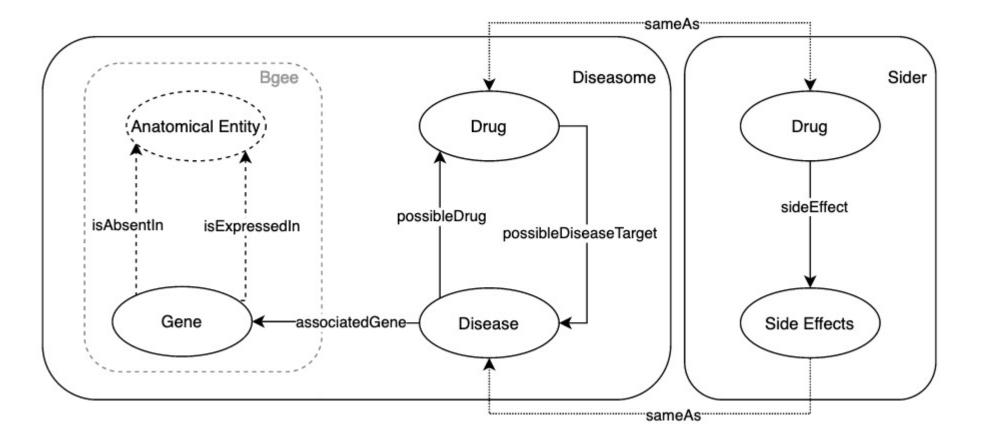
QALD-4 Summary Graph

What are the drugs for diseases associated with the brca genes?

Keyword Query: What are the drugs for diseases associated with the brca genes?

Answer

?diseases	?diseases_label	?drugs	?drugs_label	?genes	genes_label?
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/886	()varian cancer	http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00072	Trastuzumab	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA1	BRCA1
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/893		http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00171	Adenosine triphosphate	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA2	BRCA2
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/173	Breact cancer	http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00499	Flutamide	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA2	BRCA2
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/173		http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00499	Flutamide	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA1	BRCA1
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/960		http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00499	Flutamide	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA2	BRCA2
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/173	Breast cancer	http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00621	Oxandrolone	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA2	BRCA2
http://www4.wiwiss.fu-berlin.de /diseasome/resource/diseases/173	Breast cancer	http://www4.wiwiss.fu-berlin.de/drugbank /resource/drugs/DB00621	Oxandrolone	http://www4.wiwiss.fu-berlin.de /diseasome/resource/genes/BRCA1	BRCA1

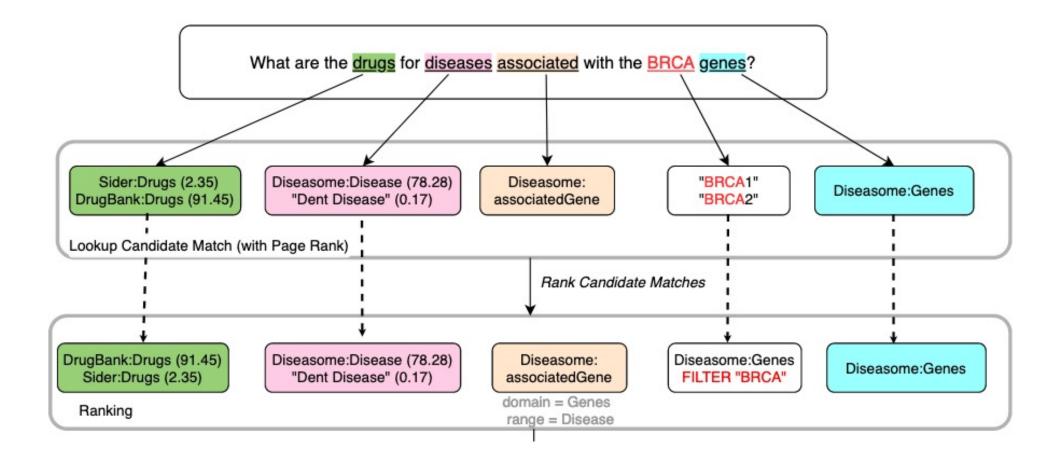

¹QALD-4: Benchmark for Question Answering over Linked Data

.Sima, A. C., de Farias, T. M., Anisimova, M., Dessimoz, C., Robinson-Rechavi, M., Zbinden, E., & Stockinger, K. (2021). Bio-SODA: Enabling Natural Language Question Answering over Knowledge Graphs without Training Data., International Conference on Scientific and Statistical Database Management (SSDBM), 2021

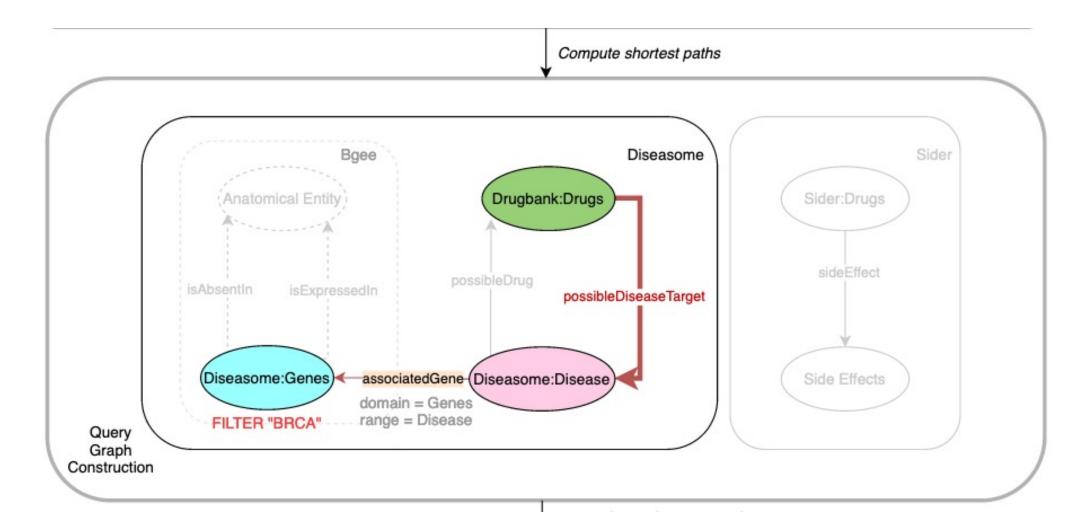
The Graph Data Model

Intuition for Translating from Natural Language to SPARQL

- We can use basic concepts of information retrieval to search the search:
 - Build inverted index on all data stored in the database
 - Use the inverted index to find matches between the query and the database
 - Use the graph structure to find connections between data
- Essentially the translation task is a pattern matching problem no learning required


Example of an Inverted Index

Lookup Key	URI	Class	Property	PageRank
stroke	side_effects:C0038454	sider:side_effects	sider:side-EffectName	0.34
drug	drugbank:drugs	owl:Class	rdfs:label	91
drug	sider:drugs	owl:Class	rdfs:label	2.3
possible	diseasome:possible-DiseaseTarget	rdf:Property	uri_match	80
disease target	-			


The Bio-SODA Approach #1

The Bio-SODA Approach #2

The Bio-SODA Approach #3

	Rank Query Graphs and Compute SPARQL query	
(SELECT DISTINCT ?diseases ?diseases_label ?drugs ?drugs_label ?genes ?genes_label WHERE { []	
	?diseases a <http: diseases="" diseasome="" resource="" www4.wiwiss.fu-berlin.de="">.</http:>	
	?drugs a <http: drugbank="" drugs="" resource="" www4.wiwiss.fu-berlin.de="">.</http:>	
	?drugs <http: drugbank="" possiblediseasetarget="" resource="" www4.wiwiss.fu-berlin.de=""> ?diseases.</http:>	
	?diseases <http: associatedgene="" diseasome="" resource="" www4.wiwiss.fu-berlin.de=""> ?genes.</http:>	
Top SPARQL	?genes a <http: diseasome="" genes="" resource="" www4.wiwiss.fu-berlin.de="">.</http:>	
query	?genes <http: 01="" 2000="" rdf-schema#label="" www.w3.org=""> ?genes_label.</http:>	
	FILTER (contains(lcase(str(?genes_label)), "brca"))}	

Compute results

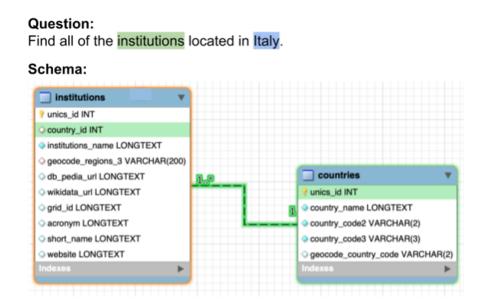
	?disease	?disease_label	?drugs	?drugs_label	?genes	?genes_label
	Diseasome:886	Ovarian cancer	DB00072	Trastuzumab	Genes:BRCA1	BRCA1
	Diseasome:893	Prostate cancer	DB00171	Adenosine triphosphate	Genes:BRCA2	BRCA2
	Diseasome:173	Breast cancer	DB00499	Flutamide	Genes:BRCA2	BRCA2
Query Executor	Diseasome:173	Breast cancer	DB00499	Flutamide	Genes:BRCA1	BRCA1

Evaluation of Bio-SODA for Question Answering

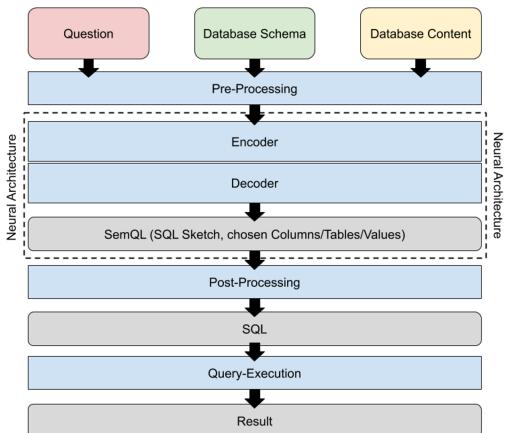
Dataset	Sources	#Classes	#Triples	Size on Disk
QALD4-biomedical	Drugbank, Diseasome, Sider	12	0.69 M	200 MB
Bioinformatics	Bgee, OMA	37	430 M	30 GB
CORDIS	EU projects dataset	26	6.5 M	1 GB

Datasets and Systems	Precision	Recall	F1
Dataset 1: QALD4			
GFMed	1	0.99	0.99
SQG	0.42	0.42	0.42
Sparklis (5.5 steps/query)	0.88	0.88	0.88
Bio-SODA	0.61	0.60	0.60
Dataset 2: Bioinformatics			
GFMed	0	0	0
SQG	0.16	0.16	0.16
Sparklis	-	-	-
Bio-SODA	0.6	0.6	0.6
Dataset 3: CORDIS			
GFMed	0	0	0
SQG	0.33	0.33	0.33
Sparklis (6.2 steps/query)	1	1	1
Bio-SODA	0.66	0.66	0.66

Bio-SODA significantly outperforms state of the art systems for large and complex datasets

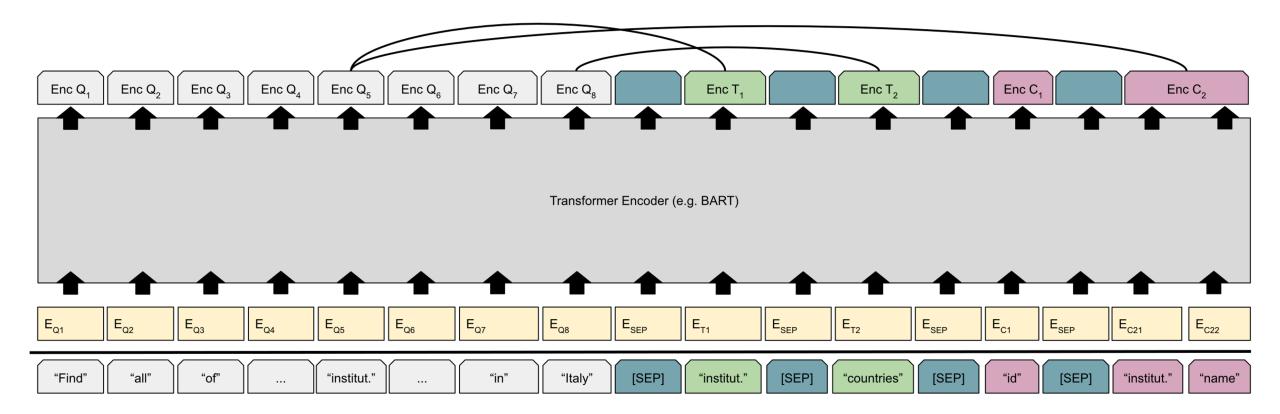

ValueNet: Building a Natural Language-to-SQL System with Neural Networks

Querying a Relational Database in Natural Language

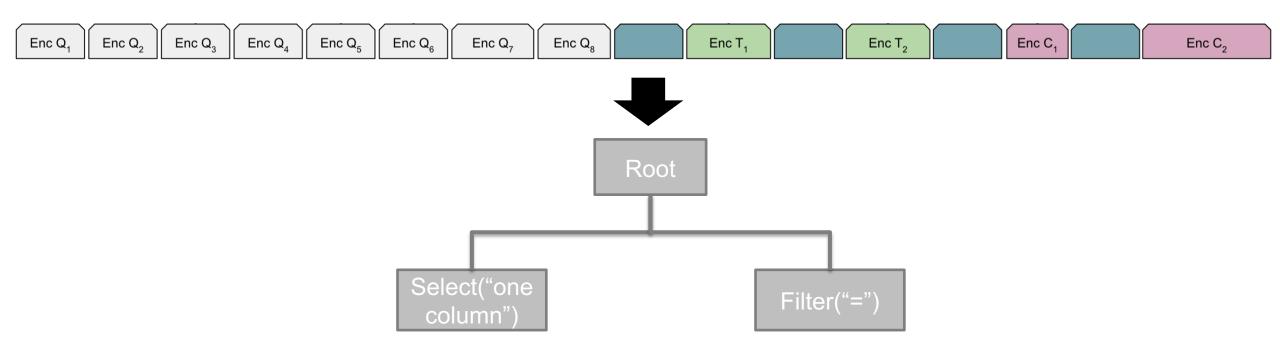

Query: SELECT T1.institutions_name FROM institutions AS T1 JOIN countries AS T2 ON T1.country_id = T2.unics_id WHERE T2.country_name = 'Italy'

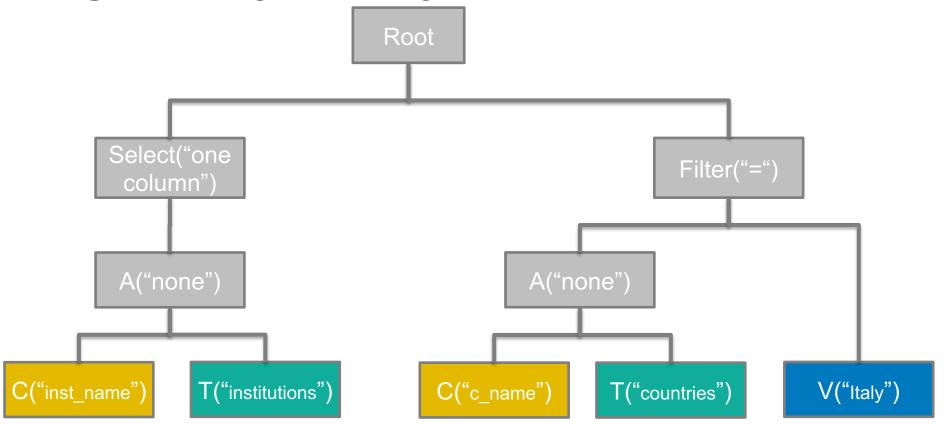
ValueNet: A Transformer-Based Neural Network Architecture

- Generate SQL given a natural language question end to end
- At its core a neural network consisting of an encoder / decoder architecture
- Generates an intermediate language SemQL – which abstracts technical details
- SemQL is deterministically transformed to SQL, or any other query language (e.g. SPARQL)
- Uses state of the art **pre-trained transformers** to understand the natural language question.

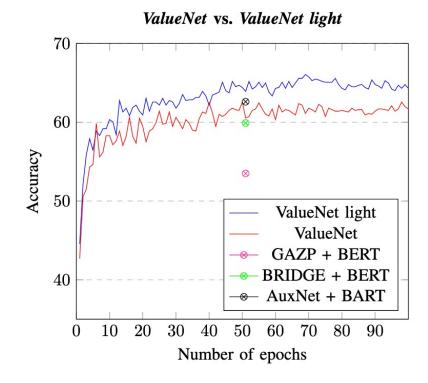


Brunner, U., & Stockinger, K. (2021). ValueNet: A Neural Text-to-SQL Architecture Incorporating Values. International Conference on Data Engineering (ICDE), Chania, Greece, 19-22 April 2021.


Encoding of Question & Database Schema


Decoder Recurrent Neural Network: Decoding a Query Step by Step #1

Decoder Recurrent Neural Network: Decoding a Query Step by Step #2



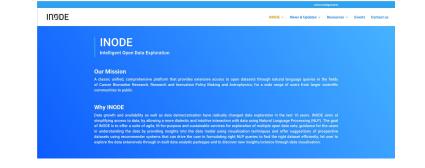
Evaluation of ValueNet for Question Answering

- Spider dataset: 200 publicly available databases with 10,181 natural language / SQL pairs
- Training set: 8,659 queries
- Validation set: 1,304 queries
- No access to test set

ValueNet outperformed initial state of the art systems

INODE in Action – A Natural Language Dialog with System Feedback

	Find project	cts that started before 2016			? 🗘	Submit	
¢	Projects title	Projects unics id	Projects acronym	Projects ec call	Projects ec fund scheme	Projects cordis ref	Projects ec ref
	valuenet: Find everything abo	ut projects whose start year is	less than 2016. projects				
^	A projects.title (STRIN Nano-Voids in Strained Silic 2 Development of Self-lubrica 2 Quality and costs of primary 2 Fast and economic insulatio 2 Mapping quantitative trait Io 2 Others	# projects.unics_id (IN < 150000.0 ≥ 210000.0	A projects.acronym (S IMPACT 7 SMART 6 HERMES 5 CASCADE 5 SCOPE 4 Others 9957	A projects.ec_call (ST FP7-PEOPLE-2013-IEF 270 FP7-PEOPLE-2012-IEF 247 H2020-MSCA-IF-2014 242 FP7-PEOPLE-2009-IEF 242 FP7-PEOPLE-2011-IEF 220 Others 8013	A projects.ec_fund_sc MC-IEF 1568 CP 1039 CP-FP 812 MC-CIG 529 CSA-SA 506 Others 4022	# projects.cordis_ref (I < 90000.0 ≥ 200000.0	# projects.ec_ref
Row 0	Engage and Inspire the Europea	153263	Odysseus	FP7-SPACE-2011-1	CSA-SA	100885	284442
Row 1	Ecological correlates of storage	159434	STORMITURTLE	FP7-PE0PLE-2009-IEF	MC-IEF	97027	252738
Row 2	Novel GAsification REactor for (174109	GAREP	H2020-SMEINST-1-2014	SME-1	197171	673311
Row 3	Technology Enhanced Learning	154270	TELL ME	FP7-ICT-2011-8	CP	106474	318329
Row 4	Understanding how plant root tr	157684	FIXSOIL	FP7-PE0PLE-2013-IEF	MC-IEF	188039	626666


ValueNet at INODE Demo by Kate Kosten, Zurich University of Applied Sciences

Conclusions and Further Information

- Building intelligent systems is not only fun but also enables access to data for a wide range of (non)technical users
- We understand data faster and can also use it faster to generate scientific results or business value
- Further information:
 - <u>http://www.inode-project.eu/</u>
 - <u>https://www.linkedin.com/in/project-inode/</u>

 Amer-Yahia, S., Koutrika, G., Bastian, F., Belmpas, T., Braschler, M., Brunner, U., ... & Stockinger, K. (2021). INODE: Building an End-to-End Data Exploration System in Practice [Extended Vision]. <u>https://arxiv.org/abs/2104.04194</u>

References

- Amer-Yahia, S., Koutrika, G., Bastian, F., Belmpas, T., Braschler, M., Brunner, U., ... & Stockinger, K. (2021). INODE: Building an End-to-End Data Exploration System in Practice [Extended Vision]. arXiv preprint arXiv:2104.04194.
- Sima, A. C., de Farias, T. M., Anisimova, M., Dessimoz, C., Robinson-Rechavi, M., Zbinden, E., & Stockinger, K. (2021). Bio-SODA: Enabling Natural Language Question Answering over Knowledge Graphs without Training Data. Scientific and Statistical Database Management Systems (SSDBM), Tampa, Florida, USA, July 2021
- Brunner, U., & Stockinger, K. (2021). ValueNet: a natural language-to-SQL system that learns from database information. In *International Conference on Data Engineering (ICDE), Chania, Greece, April 2021*.
- Liang, S., Stockinger, K., de Farias, T. M., Anisimova, M., & Gil, M. (2021). Querying knowledge graphs in natural language. Journal of Big Data, 8(1), 1-23.
- Affolter, K., Stockinger, K., & Bernstein, A. (2019). A comparative survey of recent natural language interfaces for databases. *The VLDB Journal*, *28*(5), 793-819.
- Blunschi, L., Jossen, C., Kossmann, D., Mori, M., & Stockinger, K. (2012). SODA: Generating SQL for business users. *Proceedings of the VLDB Endowment*, *5*(10), 932-943.