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‘ Problem Statement

Fdge
Computing:

Cloud Computing:
‘ “ * High latency

* High energy cost

Edge Computing:

< * Low latency
[ [1 . Low energy cost

End-device:
Eﬁ G\ < * Low compute capability
(o) (o) * Low memory space
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Problem Statement

« Wide variety of DNN (Deep Neural Networks) architectures + Diverse set of
heterogeneous edge devices => Which model and device to use for my DL tasks?

 Also, which ML Framework would be more suitable at the edge?

« How does batching input affect the performance?
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Evaluation Setup -- Devices

Jetson Nano

Raspberry Pi 4B
GPU: 128-core Maxwell

GPU : N/A CPU: Quad-core ARM A57
CPU : Quad core Cortex-A7/2 Memory: 4 GB
Memory : 4 GB
Jetson TX2
GPU: 256-core
Odroid N2 CPU: Dual-Core NVIDIA Denver +

GPU : Mali-G52 GPU

CPU : Quad-core ARM Cortex-A/3 +
Dual core Cortex-A53

Memory : 4 GB

Quad-Core ARM® Cortex®-A57r
Memory: 8 GB

Jetson Xavier NX
GPU: 384-core
CPU: 6-core
Memory: 8 GB




» Evaluation Setup -- DNN

@Xnet

1 TensorFlow

O PyTorch

Input Size Num. Layers Billion FLOPS # Params (Million)
AlexNet 2012 224 X224 8 0.7 61
SqueezeNet 2016 224 X224 15 0.4 1.2
ResNetl8 2015 224 X224 18 1.8 11.7
ResNet50 2015 224 X224 50 4.1 256
DenseNet 2016 224 X 224 161 79 287
VGG16 2014 224 X224 16 15.4 138.36




Evaluation Setup -- Process
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Throughput = (Batch Size * Number of batches) ! Total Inferencs time
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Device Vs Throughput (Batch Size = 1)

Avg. Throughput (#Inf/Sec)

Odroid N2 s
RPi 4 I

J. Nano 1 J, Xavier NX [ ]
J. TX2 &0

Avg. Top-1 Accuracy

Results are based on the best
performing framework - PyTorch

GPU-device have higher
throughput.

AlexNet and SqueezeNet are fast

ResNet-18 has decent accuracy
and throughput



 GPU-based devices show a significant
increase (as much as 2x) in throughput
with increasing batch size (expected!!)

Impact of batch size (AlexNet)

Avg. Throughput

(a) MxNet (b) PyTorch (c) TensorFlow
120 : 120 ; ; ; : ; : 120 ;: : ; g : : :
A A J.Nano === Odroid-N2 and Raspberry Pi4 show
100 = 100 = 100 J. TX2 =t o
= = T, Xavier NIX minor improvement.
80 < 80 = 80 Odroid N2
= = ORPi4
60 g 60 g 60 e
= = Insight: MxNet slightly better at
an 40 b 40 i '
E % batched inferencing
20 20
0 oo amioe 0 i b e
A - & e a Bottleneck: Both CPU and GPU share

Batch Size

Batch Size

Batch Size

the same DRAM memory, meaning
that increasing batch size can quickly
saturate the memory.



Resource Usage

 Heavier DNN models like
DenseNet and VGG16 consume

(a) CPU (Od. N2) (b) Memory (J. TX2) (c) Power (Xavier NX) resources extensively (expected!!)
100 — : : ; : a 8K — z 5 ; : —~ 8K MXNet I
/\; = B : PyTorch s
< 80 B/ é TensorFlow B
gC;D %0 6K ...................... Go)D 6K L el e JAE . PyTorch ) |east memory
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Z\' 4K ................ = 4K ..........
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> : o
< el)] =
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Impact of loading time (J. Nano)

* Loading time - Overhead
associated with initializing DNN
models and loading parameters
into the memory.

7 (a) MXNet 20 (b) PyTorch (c) TensorFlow

60 ............. AAAAAAAAAAAAAA AAAAAAAAAAAAA
) A S S

70

Avg. Load Time -
60 Avg. Infer. Time =

40 — AAAAAAAAAAAAA AAAAAAAAAAAAAA .............

 TF is poor; PyTorch is
exceptionally efficient

Total Inference Time
Total Inference Time
Total Inference Time

* Insight: On average, the loading
%, %, Yo, %, time is 2.4x (MXNet) - 4x (TF)
& b, %, Y%, larger than the inference time.




e Costis also acritical factor when

Cost-Performance ana |y5iS selecting edge devices for DL

inference tasks

o Jetson TX2 and Xavier NX are on

= 60 - i the pricier side but demonstrate
_% higher performance
=
E “UE B * Insight: In terms of power usage,
E the difference is negligible
o 20 ] N 5 N between the CPU only (e.q.,
§ EIS00. NANo Raspberry Pi4) and GPU-equipped
& | Jetson TX2 © i . .

0 Tetson Xavier NX O edge devices (e.qg., Jetson devices).

Raspberry Pi4 @
220 | | ' | | * Note- Odroid-N2’s results have
N 100 200 200 400 been excluded due to unreliable

Price results from the power
($) measurement circuit (INA219)
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Conclusion

HW specification, batch size and DL framework all
affect DL inference performance considerably

GPU resources are critical to increasing the
performance

Claim - Pytorch is the most efficient framework in
terms of throughput (and latency) and system
utilization
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Framework-specific optimizations were left out to
give all the frameworks a common ground for
evaluation

Future Work

* Future work #1 - Apply all possible
optimizations.

e Future work #2 - Investigate TPU (Tensor
Processing Unit) based devices like Google’s
Coral USB Accelerator, Intel’s Neural Compute
Stick.



