Characterizing Resource Heterogeneity in Edge Devices for Deep Learning Inferences

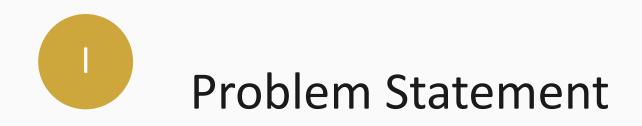
Jianwei Hao, Piyush Subedi, Dr. In Kee Kim, Dr. Lakshmish Ramaswamy

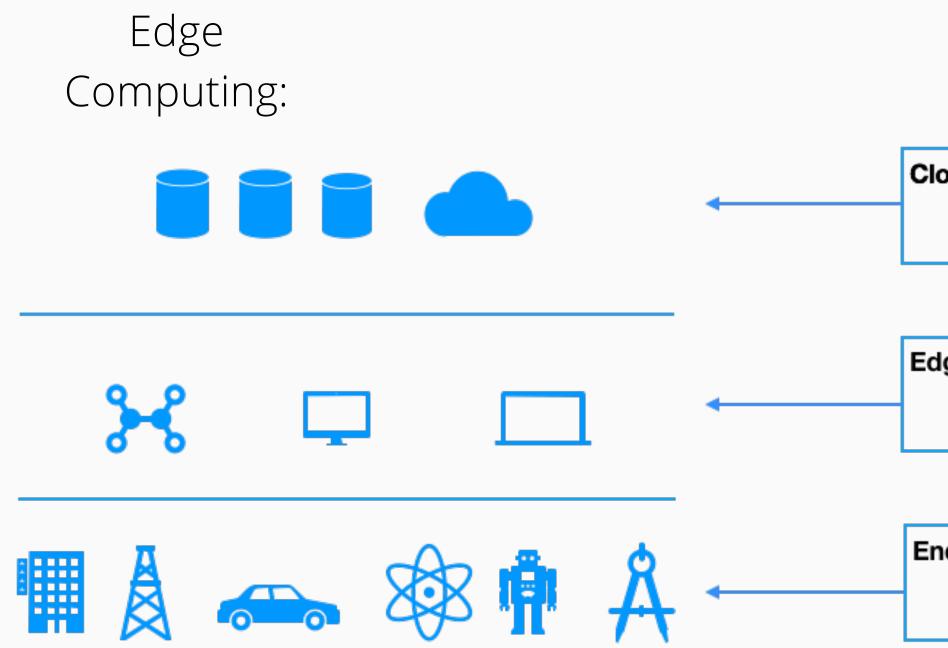
SNTA '21

Agenda

- Problem Statement
- Related Works
- Evaluation Setup
- Results
- Conclusion and Future Work

SNTA '21





Cloud Computing:

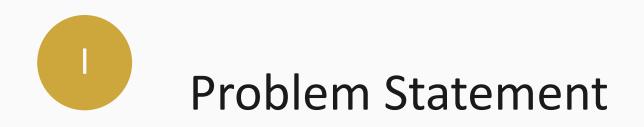
- High latency
- High energy cost

Edge Computing:

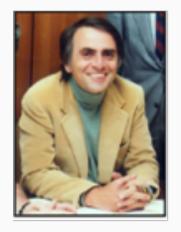
- Low latency
- Low energy cost

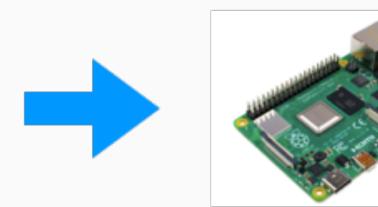
End-device:

- Low compute capability
- Low memory space



Al on Edge Computing:





- Wide variety of DNN (Deep Neural Networks) architectures + Diverse set of heterogeneous edge devices => Which model and device to use for my DL tasks?
- Also, which ML Framework would be more suitable at the edge?
- How does batching input affect the performance?

Related Works

Authors	Paper	Year	Focus	Metrics	Frameworks	Models	Devices	Batching
Zhang et al.	pCAMP: Performance Comparison of Machine Learning Packages on the Edges	2018	Edge	Latency, Memory, Energy	TF, PyTorch, MXNet, Caffe2, TFLite	AlexNet, SqueezeNet	Jetson TX2, Raspberry Pi, Macbook Pro, Intel FogNode, Nexus 6P	NO
Antonini et al.	Resource Characterisation of Personal- Scale Sensing Models on Edge Accelerators	2019	Edge	Latency, Memory, Energy	TF	5 vision based models, 2 audio based models and 1 motion based model	Rashberry PLAR (oral	NO
Ross et al.	EdgeInsight: Characterizing and Modeling the Performance of Machine Learning Inference on the Edge and Cloud	2019	Edge- Cloud	Latency, Network, CPU	TFLite	MobileNetV2 quantized	OnePlus 6T	NO
Süzen et al.	Benchmark Analysis of Jetson TX2, Jetson Nano and Raspberry PI using Deep-CNN	2020	Edge	Latency, Memory, Energy	NVIDIA's cuDNN	Custom	Jetson TX2, Jetson Nano, Raspberry Pi 4	NO
Jo et al.	Benchmarking GPU-Accelerated Edge Devices	2020	Edge- Cloud	Throughput (frames/sec)	NVIDIA's TensorRT	AlexNet, ResNet50	Jetson Nano, Jetson TX2	NO

Evaluation Setup

Evaluation Setup -- Devices

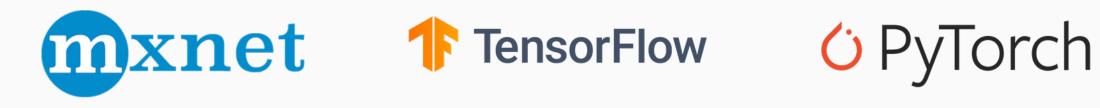
Raspberry Pi 4B GPU : N/A CPU : Quad core Cortex-A72 Memory : 4 GB

Odroid N2 GPU : Mali-G52 GPU CPU : Quad-core ARM Cortex-A73 + Dual core Cortex-A53 Memory : 4 GB

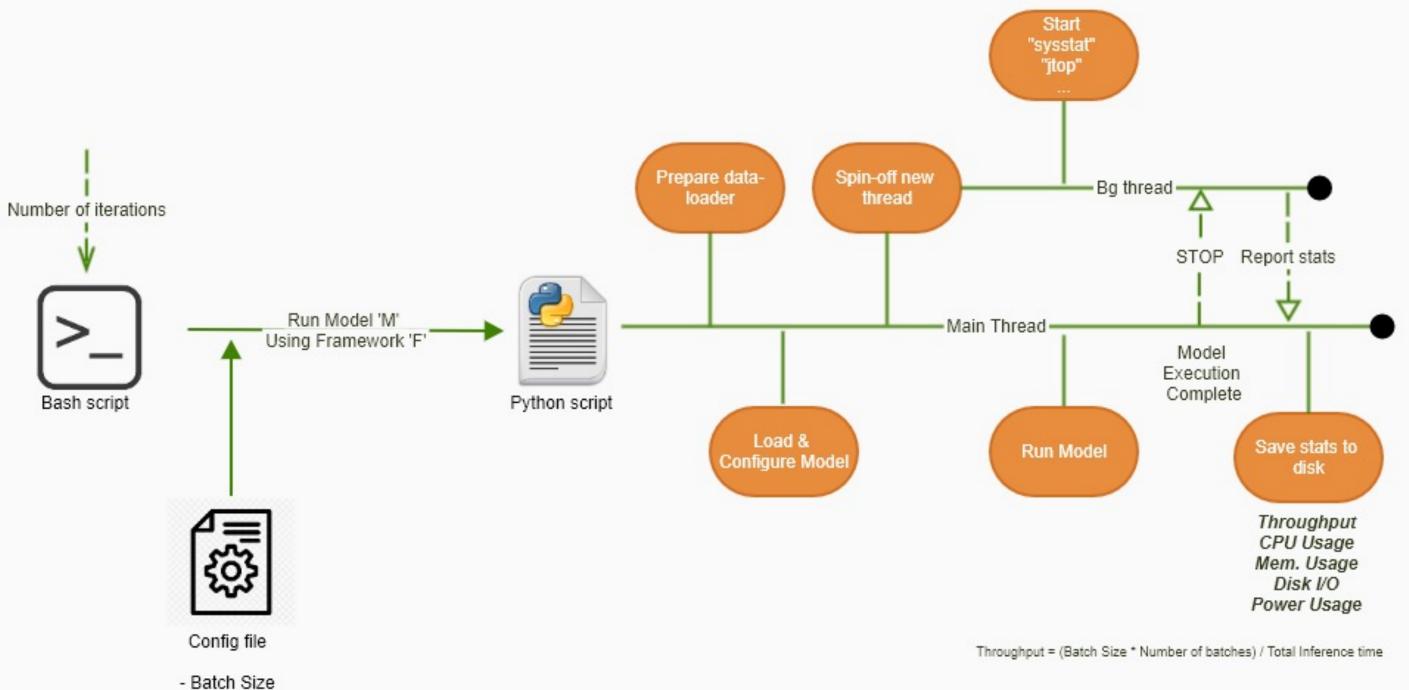
Jetson Nano GPU: 128-core Maxwell CPU: Quad-core ARM A57 Memory: 4 GB

Jetson TX2 GPU: 256-core CPU: Dual-Core NVIDIA Denver + Quad-Core ARM® Cortex®-A57r Memory: 8 GB

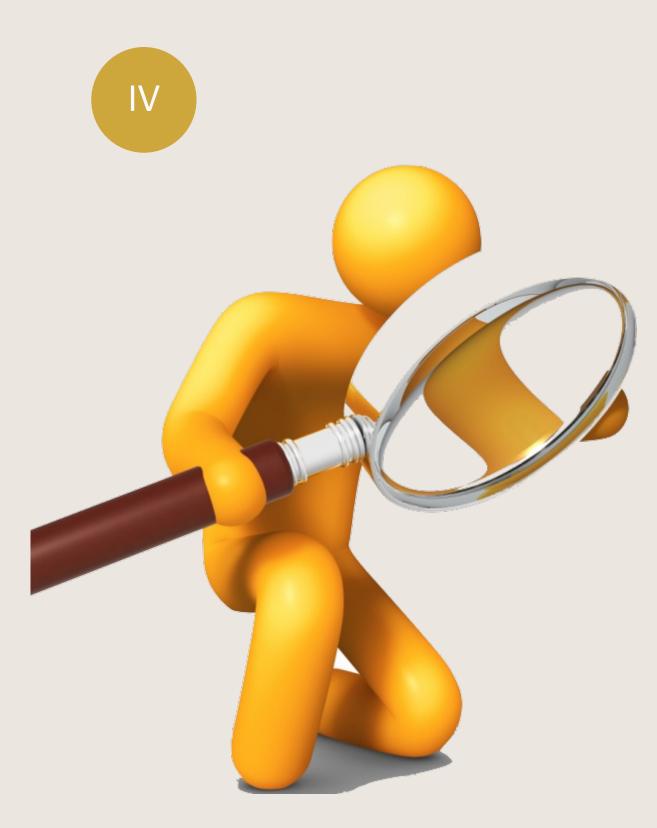
Jetson Xavier NX GPU: 384-core CPU: 6-core Memory: 8 GB



Models	Year	Input Size	Num. Layers	Billion FLOPS	# Params (Million)
AlexNet	2012	224 X 224	8	0.7	61
SqueezeNet	2016	224 X 224	15	0.4	1.2
ResNet18	2015	224 X 224	18	1.8	11.7
ResNet50	2015	224 X 224	50	4.1	25.6
DenseNet	2016	224 X 224	161	7.9	28.7
VGG16	2014	224 X 224	16	15.4	138.36



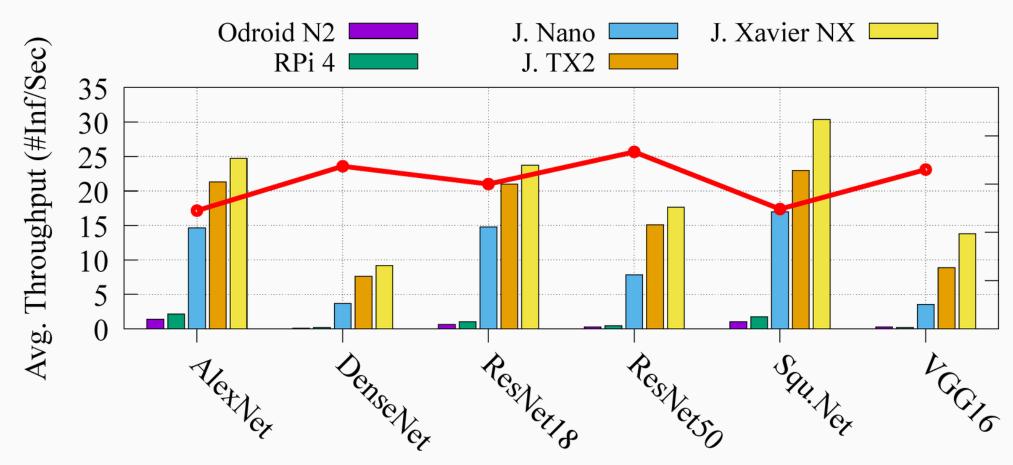
- No. of Batches
- No. of warmups

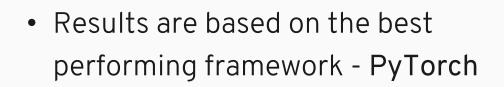


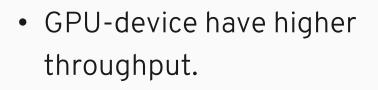
Results and Discussions

IV

Device Vs Throughput (Batch Size = 1)







- AlexNet and SqueezeNet are fast
- ResNet-18 has decent accuracy and throughput
- 100
 100

 80
 00

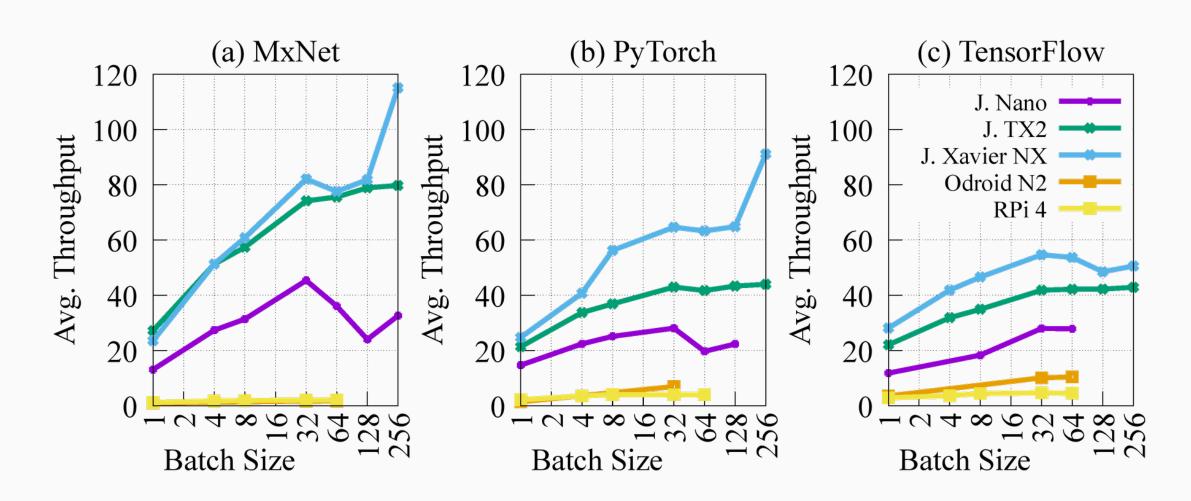
 40
 00

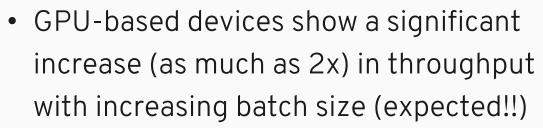
 700
 00

 0
 0

VI

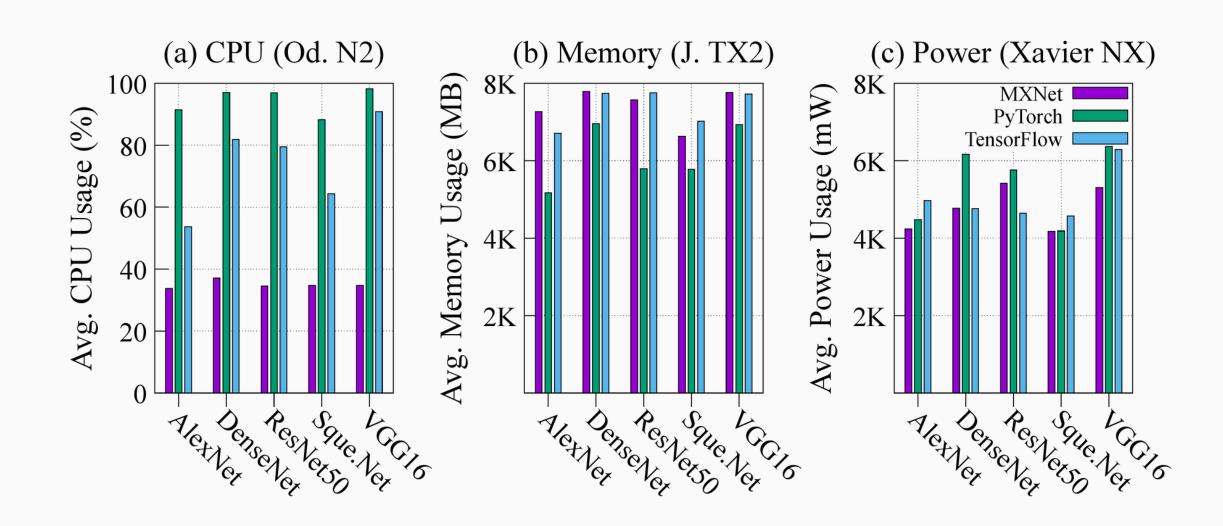
Impact of batch size (AlexNet)





- Odroid-N2 and Raspberry Pi4 show minor improvement.
- *Insight:* MxNet slightly better at batched inferencing
- *Bottleneck:* Both CPU and GPU share the same DRAM memory, meaning that increasing batch size can quickly saturate the memory.

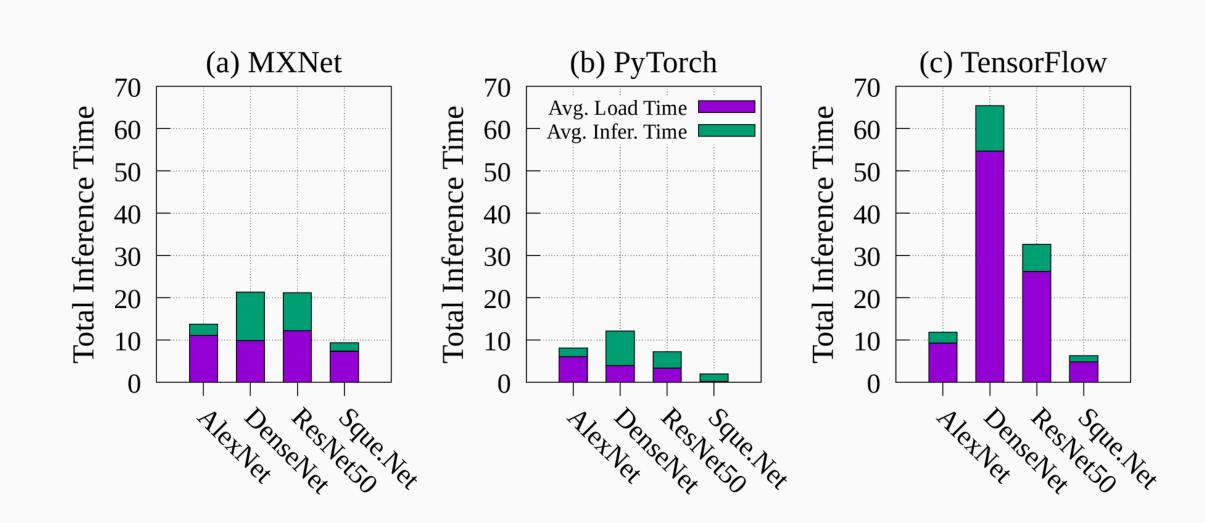
Resource Usage



- Heavier DNN models like
 DenseNet and VGG16 consume
 resources extensively (expected!!)
- PyTorch least memory consumption; high CPU and Power usage
- MXNet high memory utilization; low CPU and power usage

IV

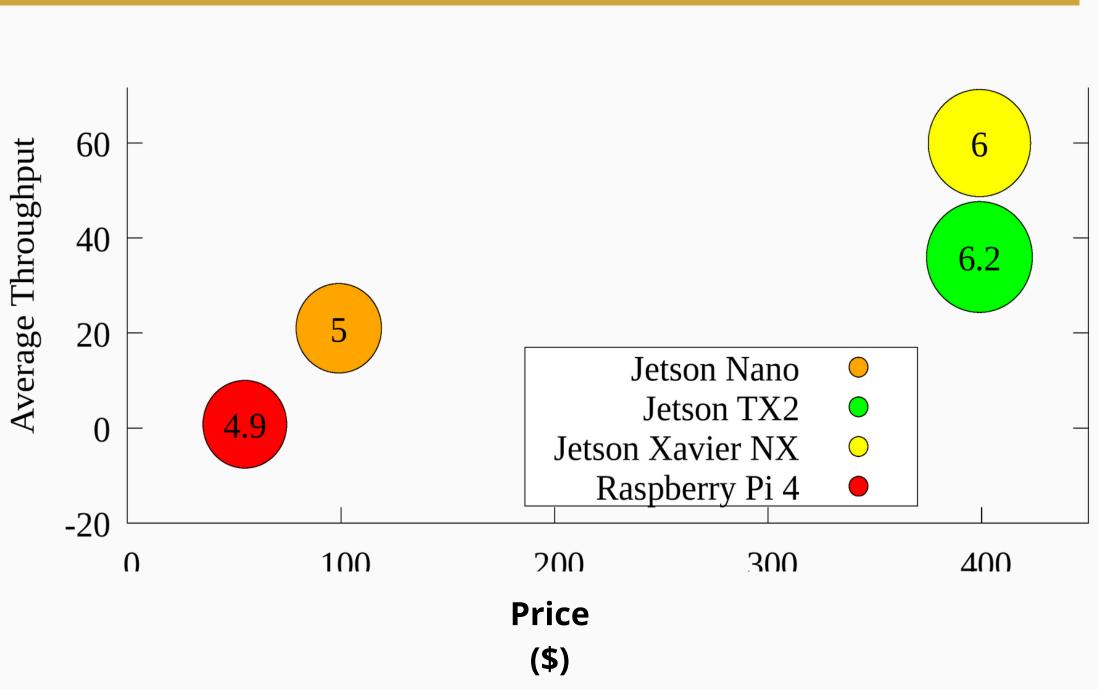
Impact of loading time (J. Nano)



- Loading time Overhead associated with initializing DNN models and loading parameters into the memory.
- TF is poor; PyTorch is exceptionally efficient
- Insight: On average, the loading time is 2.4× (MXNet) – 4× (TF) larger than the inference time.

IV

Cost-Performance analysis



- Cost is also a critical factor when selecting edge devices for DL inference tasks
- Jetson TX2 and Xavier NX are on the pricier side but demonstrate higher performance
- Insight: In terms of power usage, the difference is negligible between the CPU only (e.g., Raspberry Pi4) and GPU-equipped edge devices (e.g., Jetson devices).
- Note- Odroid-N2's results have been excluded due to unreliable results from the power measurement circuit (INA219)

Conclusion

HW specification, batch size and DL framework all affect DL inference performance considerably

GPU resources are critical to increasing the performance

Claim - Pytorch is the most efficient framework in terms of throughput (and latency) and system utilization

Framework-specific optimizations were left out to give all the frameworks a common ground for evaluation

Future Work

• Future work #1 - Apply all possible

- optimizations.
- Future work #2 Investigate TPU (Tensor
 - Processing Unit) based devices like Google's
 - Coral USB Accelerator, Intel's Neural Compute Stick.