AN UNIVERSITY OF

%_ GEORGIA

Characterizing Resource Heterogeneity
INn Edge Devices for Deep Learning Inferences

Jianwei Hao, Piyush Subedi, Dr. In Kee Kim, Dr. Lakshmish Ramaswamy

SNTA '21

SNTA 21

Agenda

* Problem Statement
» Related Works

* Evaluation Setup

* Results

 Conclusion and Future Work

‘ Problem Statement

Fdge
Computing:

Cloud Computing:
‘ “ * High latency

* High energy cost

Edge Computing:

< * Low latency
[[1 . Low energy cost

End-device:
Eﬁ G\ < * Low compute capability
(o) (o) * Low memory space

‘ Problem Statement

Al on Edge
Computing:

Problem Statement

« Wide variety of DNN (Deep Neural Networks) architectures + Diverse set of
heterogeneous edge devices => Which model and device to use for my DL tasks?

 Also, which ML Framework would be more suitable at the edge?

« How does batching input affect the performance?

G Related Works

Authors

pCAMP: Performance Comparison of
Machine Learning Packages on the
Edges

Zhang et al.

Resource Characterisation of Personal-
Scale Sensing Models on Edge
Accelerators

Antonini et al.

Edgelnsight: Characterizing and
Modeling the Performance of Machine
Learning Inference on the Edge and
Cloud

Ross et al.

Benchmark Analysis of Jetson TX2,
Jetson Nano and Raspberry Pl using
Deep-CNN

Stizen et al.

Benchmarking GPU-Accelerated Edge

Joetal. .
Devices

2018

2019

2019

2020

2020

Edge

Edge

Edge-
Cloud

Edge

Edge-
Cloud

Metrics

Latency,
Memory,
Energy

Latency,
Memory,
Energy

Latency,
Network, CPU

Latency,
Memory,
Energy

Throughput
(frames/sec)

Frameworks

TF, PyTorch,
MXNet, Caffe2,
TFLite

TF

TFLite

NVIDIA's cuDNN

NVIDIA's TensorRT

Models Devices

Jetson TX2, Raspberry
Pi, Macbook Pro, Intel
FogNode, Nexus 6P

AlexNet, SqueezeNet

Jetson Nano,
Raspberry Pi 4B, Coral
Dev Board, Coral USB

Accelerator

5 vision based models, 2
audio based models and
1 motion based model

MobileNetV2 quantized OnePlus 6T

Jetson TX2, Jetson

Cust :
e Nano, Raspberry Pi 4

Jetson Nano, Jetson

AlexNet, ResNet50 ™2

Batching

NO

NO

NO

NO

NO

Evaluation Setup

Evaluation Setup -- Devices

Jetson Nano

Raspberry Pi 4B
GPU: 128-core Maxwell

GPU : N/A CPU: Quad-core ARM A57
CPU : Quad core Cortex-A7/2 Memory: 4 GB
Memory : 4 GB
Jetson TX2
GPU: 256-core
Odroid N2 CPU: Dual-Core NVIDIA Denver +

GPU : Mali-G52 GPU

CPU : Quad-core ARM Cortex-A/3 +
Dual core Cortex-A53

Memory : 4 GB

Quad-Core ARM® Cortex®-A57r
Memory: 8 GB

Jetson Xavier NX
GPU: 384-core
CPU: 6-core
Memory: 8 GB

» Evaluation Setup -- DNN

@Xnet

1 TensorFlow

O PyTorch

Input Size Num. Layers Billion FLOPS # Params (Million)
AlexNet 2012 224 X224 8 0.7 61
SqueezeNet 2016 224 X224 15 0.4 1.2
ResNetl8 2015 224 X224 18 1.8 11.7
ResNet50 2015 224 X224 50 4.1 256
DenseNet 2016 224 X 224 161 79 287
VGG16 2014 224 X224 16 15.4 138.36

Evaluation Setup -- Process

Number of iterations
|

v

> ~ Run Model 'M’
Using Framework 'F'
Bash script

A5
Config file
- Batch Size

- No. of Batches
- No. of warmups

—

Prepare data-
loader

o

Python script

[ul

Load &
Configure Model

Bg thread ? i &
|

STOP Report stats

.
' o
Model

Execution
Complete

Main Thread

Run Model Save stats fo

disk

Throughput
CPU Usage
Mem. Usage
Disk I'0
Power Usage

Throughput = (Batch Size * Number of batches) ! Total Inferencs time

Results
and
Discussions

Device Vs Throughput (Batch Size = 1)

Avg. Throughput (#Inf/Sec)

Odroid N2 s
RPi 4 I

J. Nano 1 J, Xavier NX []
J. TX2 &0

Avg. Top-1 Accuracy

Results are based on the best
performing framework - PyTorch

GPU-device have higher
throughput.

AlexNet and SqueezeNet are fast

ResNet-18 has decent accuracy
and throughput

 GPU-based devices show a significant
increase (as much as 2x) in throughput
with increasing batch size (expected!!)

Impact of batch size (AlexNet)

Avg. Throughput

(a) MxNet (b) PyTorch (c) TensorFlow
120 : 120 ; ; ; : ; : 120 ;: : ; g : : :
A A J.Nano === Odroid-N2 and Raspberry Pi4 show
100 = 100 = 100 J. TX2 =t o
= = T, Xavier NIX minor improvement.
80 < 80 = 80 Odroid N2
= = ORPi4
60 g 60 g 60 e
= = Insight: MxNet slightly better at
an 40 b 40 i '
E % batched inferencing
20 20
0 oo amioe 0 i b e
A - & e a Bottleneck: Both CPU and GPU share

Batch Size

Batch Size

Batch Size

the same DRAM memory, meaning
that increasing batch size can quickly
saturate the memory.

Resource Usage

 Heavier DNN models like
DenseNet and VGG16 consume

(a) CPU (Od. N2) (b) Memory (J. TX2) (c) Power (Xavier NX) resources extensively (expected!!)
100 — : : ; : a 8K — z 5 ; : —~ 8K MXNet I
/\; = B : PyTorch s
< 80 B/ é TensorFlow B
gC;D %0 6K Go)D 6K L el e JAE . PyTorch) |east memory
2 60 — % consumption; high CPU and Power
Z\' 4K = 4K
= 40 S 5 usage
@)
b:[) 20 é) 2K Qo-i 2K
> : o
< el)] =
0 Z < - MXNet - high memory utilization:
ﬁ/%;%%’%& d;}‘/o LOO (7/%’?%’%& ‘5;;% LQO 7/%;)%’%& ‘%OG LOO low CPU and power usage
& 0/16/ G{YO. 3 /6\ & 0/1/0{ 0{)‘0' 3 /6 & G/I/G[@{5\0. > /6

Impact of loading time (J. Nano)

* Loading time - Overhead
associated with initializing DNN
models and loading parameters
into the memory.

7 (a) MXNet 20 (b) PyTorch (c) TensorFlow

60 AAAAAAAAAAAAAA AAAAAAAAAAAAA
) A S S

70

Avg. Load Time -
60 Avg. Infer. Time =

40 — AAAAAAAAAAAAA AAAAAAAAAAAAAA

 TF is poor; PyTorch is
exceptionally efficient

Total Inference Time
Total Inference Time
Total Inference Time

* Insight: On average, the loading
%, %, Yo, %, time is 2.4x (MXNet) - 4x (TF)
& b, %, Y%, larger than the inference time.

e Costis also acritical factor when

Cost-Performance ana |y5iS selecting edge devices for DL

inference tasks

o Jetson TX2 and Xavier NX are on

= 60 - i the pricier side but demonstrate
_% higher performance
=
E “UE B * Insight: In terms of power usage,
E the difference is negligible
o 20] N 5 N between the CPU only (e.q.,
§ EIS00. NANo Raspberry Pi4) and GPU-equipped
& | Jetson TX2 © i . .

0 Tetson Xavier NX O edge devices (e.qg., Jetson devices).

Raspberry Pi4 @
220 | | ' | | * Note- Odroid-N2’s results have
N 100 200 200 400 been excluded due to unreliable

Price results from the power
($) measurement circuit (INA219)

SNTA 21

Conclusion

HW specification, batch size and DL framework all
affect DL inference performance considerably

GPU resources are critical to increasing the
performance

Claim - Pytorch is the most efficient framework in
terms of throughput (and latency) and system
utilization

AN UNIVERSITY OF

%. GEORGIA

Framework-specific optimizations were left out to
give all the frameworks a common ground for
evaluation

Future Work

* Future work #1 - Apply all possible
optimizations.

e Future work #2 - Investigate TPU (Tensor
Processing Unit) based devices like Google’s
Coral USB Accelerator, Intel’s Neural Compute
Stick.

