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Network function virtualization (NFV)

7 NFV replaces dedicated hardware with software instances that can
be deployed, scaled, and migrated dynamically

o Reconstruct network services by launching dedicated functions in a
single application on general-purpose hardware

Traditional Network Appliance
Approach

Network Virtualisation Approach
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Virtualized Network Function

A virtualized network function (VNF) is an NF
designed to run in a virtualized environment

Virtual
Network
Functions

A virtual machine (VM) is a software-only version

of a physical server machine.
( a complete instance of the application code, a guest OS/kernel,
and hypervisor that coordinates VM resource management )

Aual Network 2
' Network functions (NF) are physical devices that
blivsical Network process packets supporting a network and/or
—— Physical Link === Virtual Link application service

1 The core of network functions is performing packets processing

o Actually, migrating network functions is implementing the same flow of
processing packets onto different platform
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New Challenges of NFV

1 The network performance on NFV refers | e J
to the efficiency of packet processing =
1 Network performance impacts by i s oue s
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o Using ping as example .

: Root Cause 1 :

' Packet Context Switch
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1. Receiving packet from
hardware

2. Packet is transferred from ring
buffer to a socket receive buffer
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3. Packet is copied from the socket
receive buffer to the application




Root cause 2 — Overlay Network

o Why overlay network ? e ,
00 Avoid ARP and routing table crash

0 Migration services seamless e x-———————~ |
\\ Container \ Kernel Kernel Container
If we have 200 rack, each rack has 10 host, once the working \ Appiication | O¥erley Nework | | | Overlay Network T pppiation
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Network Accelerating Solutions

Control & Data
o Hardware p.;nemmc
0 network processor units (NPUs) i QCP”
. . . < [ %
0 graphics processing units (GPUs) Plane
O field programmable gate arrays (FPGASs) a. Forwarding by CPU
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@J . tﬁ % K,%,uj Fastpath 9

NATIONAL TSING HUA UNIVERSITY



Motivation

o The platform of NFV is migrating from virtual machine to container

. Y2018-2019 Y2019-2020 Y2020-2021
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7 How the existing packet processing solutions performs on
container-based network function ?
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Contribution

-1 To describe existing packet processing framework using in NFV
with container

- To evaluate the network performance after packet processing
framework applied in NFV with container

o To discuss and tuning the packet processing performance
impacting by network architecture.
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Kubernetes Networking

7 We use Kubernetes to be our evaluation platform, since
Kubernetes is a very mature container manager

- Kubernetes does not provide any solution for handling
containers networking
0 It offloads networking to third-party certified plugins called CNI
plugins
1 Most CNI plugins use overlay network as default

1the acceleration is still needed
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User Space CNF packet processing

7 Why user space?

0 It is easier to design a new algorithm if the packets are processed in

the user space

- User space accelerating Solutions

0 Vector Packet Processing (FD.io VPP)
m Lockless Parallelism

00 Data Plane Development Kit (DPDK)
1 Kubernetes Solutions
00 Contiy
-
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Contiv Network Architecture

o1 Contiv/VPP is a Kubernetes network plugin that uses FD.io VPP with DPDK as
the dataplane for packet forwarding between PODs in a Kubernetes

Kubemnetes Node Kubernetes Master
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Kernel Space CNF packet processing

1 New Chapter of Kernel : A new just-in-time (JIT) feature

0 Developers can extend functions efficiently under the governments
to reduce failures

-1 Kernel space accelerating Solutions

00 eBPF/XDP = —
0 Kubernetes Solutions '? L g
0 Cilium
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Cilium

1 The foundation of Cilium is eBPF

1 Because eBPF runs inside the Linux kernel, Cilium modules can apply

and updated without any changes to the application code or container
configuration

o8 08 os yoed 060
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Solutions Comparison

Vector Packet
Processing, Data
Plane Development
Kit

Using VPP and DPDK to
Contiv User increase packet processing Layer2, Layer 3, ACI iptables
on user space

Using eBPF to provide new
Cilium Kernel Kernel module solution like
routing and security

Layer 2 by (default), BGP,

Layer 3 (optional) Kubeproy eBPF
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Experiments Setup

o The goal of our experiments . Packet Processing

0 We reduce the side effects from network equipment

1 We first estimate the baseline of host and VM, then compare
the solutions along with the network models individually

Container Container

Kubernetes

Container Container
VM A\

Kubernetes
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Testbed Specs

- Hardware
o CPU

m Two Intel Xeon Processor X5670 2.93-GHz processors
m Each processor had 12 physical cores, and hyper-threading was enabled.

0 Ram . 96GB
0 Software

O Linux kernel : 5.4.0-66- generic operating system Ubuntu 20.04.1
0 Docker : 19.03
O Kubernetes : 1.20

o Virtualization platform
O VM . KVM
0 Kubernetes CNI : Calico
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Scenario — Single VM/Host

* Kernel space acceleration can help to reach nearline in host, user space

acceleration is the worst
* The performance on vm is quite different as we thought, all performance
decreasing on VM, even Cilium is worse than container baseline
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Scenario — Single VM with SR-IOV

According to our related work, VM can get acceleration by using hardware technique
Both VM and Container baseline has increased, but the trend is still the same

Since the container baseline has increased, Cilium still can’t reach container baseline but
better than Calico eBPF mode like host
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Scenario — Kernel Space Tuning

The MTU size impact significantly on network, the performance can sometime increased after
adjusting the MTU size

Due to eBPF programmable in Kernel, packet processing benefits from using native routing
instead of overlay network
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Conclusion

1 Kubernetes CNI with the user space and the kernel space
severally impact the CNF packet processing performance

- Kernel Space Acceleration on the host or on the VM after
tuning can get best performance result

-1 User Space acceleration looks not helping in container packet
processing even with hardware support

7 We could perform more comparisons of network features on
container like security or IP management for further research
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