Evaluations of Network Performance
Enhancement on Cloud-native Network
Function

Yong-Xuan Huang, Jerry Chou

The Fourth International Workshop on
Systems and Network Telemetry and Analytics (SNTA 2021)

& = Hy 3 < Y 1

NATIONAL TSING HUA UNIVERSITY

Agenda

7 Motivation
0 Method

0 Experiments
0 Conclusion

@Jﬁ*‘%’%‘ﬁ'ﬂgj 2

NATIONAL TSING HUA UNIVERSITY

Network function virtualization (NFV)

7 NFV replaces dedicated hardware with software instances that can
be deployed, scaled, and migrated dynamically

o Reconstruct network services by launching dedicated functions in a
single application on general-purpose hardware

Traditional Network Appliance
Approach

Network Virtualisation Approach

Independent
Software Application

o1 [. ® o

] Orchestration
‘ & Automation
E Monitor [T gt gy @
il i <on W
- llg?)| Standard Servers, Storage and Switch
B = | K

NATIONAL TSING HUA UNIVERSITY

Virtualized Network Function

A virtualized network function (VNF) is an NF
designed to run in a virtualized environment

Virtual
Network
Functions

A virtual machine (VM) is a software-only version

of a physical server machine.
(a complete instance of the application code, a guest OS/kernel,
and hypervisor that coordinates VM resource management)

Aual Network 2
' Network functions (NF) are physical devices that
blivsical Network process packets supporting a network and/or
—— Physical Link === Virtual Link application service

1 The core of network functions is performing packets processing

o Actually, migrating network functions is implementing the same flow of
processing packets onto different platform

@Jﬁ*fﬁ’%‘ﬁ'ﬂgj 4

NATIONAL TSING HUA UNIVERSITY

New Challenges of NFV

1 The network performance on NFV refers | e J
to the efficiency of packet processing =
1 Network performance impacts by i s oue s
migrating special-purpose application- me | m;\“ﬁ
specific integrated circuit (ASIC) to Toms Toow _pemosdf
common-off-the-shelf (COTS) hardware T
0 Key performance indicator such as mz'.:':z?n
throughput and latency, affecting the overall s
end-to-end application performance we
@%} = [ﬁ /%‘ K’%’iﬁ Linux Packet Processing Flow

NATIONAL TSING HUA UNIVERSITY

o Using ping as example .

: Root Cause 1 :

' Packet Context Switch
A T e e e e e e e e e e = = J
. ! \ Socket RCV /l)muw> .
TrafficSource Ring Buffer Softlrg) \\ Buffer \Sc |1Ldl-,]/u Traffic Sink
N \ ——
. Jr = [e RN it et 1
NIC l boop ! 'TCP/UDP' | SOCKRCV ! Network
I k] “’i DMA t==> = EProcessing: |Processmgl E SYS_CALL E' Application
Bl 4 T A
, NIC & Device Driver I I I

1. Receiving packet from
hardware

2. Packet is transferred from ring
buffer to a socket receive buffer

=T T 7~
NATIONAL TSING HUA UNIVERSITY

3. Packet is copied from the socket
receive buffer to the application

Root cause 2 — Overlay Network

o Why overlay network ? e ,
00 Avoid ARP and routing table crash

0 Migration services seamless e x-———————~ |
\\ Container \ Kernel Kernel Container
If we have 200 rack, each rack has 10 host, once the working \ Appiication | O¥erley Nework | | | Overlay Network T pppiation
instances grows to 100x, the routing table will crash vy N) -
\ » vSwitch vSwitch
\ P ||
FIB TCAM entries: O(N) TCAM entries: O(M) TCAM entries: O(M) \ [e
« N:total nodes * N: number of nodes * N:number of nodes \ :
. P: ~16K*70% = ~11K effective entries . M:Nnuml:)eroof tgtal instan'ces g:Nrg:r;Ee;oc:; t_c>£a4|;;stanc.es .]
e N<KP(~2kvs. ~11k) © Pi764K*70% = ~44K entries ' °" entries VM Hypervisor | | Hypervisor VM
’ * M=P (~30Kvs. ~44K) * M> P (~150k vs. ~44k) : .
N — \ Application Hosggit'\(ﬂom :] Hostsi\laitl\(/vork Application
2 P o o o
Gery ook ::t vSwitch vSwitch ::t S
Network Service Scale: 1x 7

Network Accelerating Solutions

Control & Data
o Hardware p.;nemmc
0 network processor units (NPUs) i QCP”
. . . < [%
0 graphics processing units (GPUs) Plane
O field programmable gate arrays (FPGASs) a. Forwarding by CPU
Data
o smart NICs (sNICs) Plang==r~ Control plane
— >
- Software E_’ fuw e L
0 CPU pinning -
b. Hard based Fastpath
01 Zero-copy Most of the software R
O Batch processing tuning are functioning Data | s - |
0 NUMA-aware in user space PRY | |) %FP gl
0 Lockless Parallelism p —
0 eBPF | ;

c. Software based Application Specific

@J . tﬁ % K,%,uj Fastpath 9

NATIONAL TSING HUA UNIVERSITY

Motivation

o The platform of NFV is migrating from virtual machine to container

. Y2018-2019 Y2019-2020 Y2020-2021
due to ‘ 70% (ITS3I2% : 50% Bty 52‘? = 30% 70%
0 Slower provision time T~ DR -

' ™ m'
_ IETe
4

K8s/OCP :
= 1

0 CPU and memory

1
Hypervisor

Hypervisor

1
Kubevirt [

l

i
i
0 Poor network speed openstack OpenStack | Kes/oCP4 [l OPen™iack | KesiocPa
Bare Metal Bare Metal Bare Metal
Data Lake Data Lake Data Lake
. OPERATOR . : i EIIrN uUXx
SoE: System of Engagement FRAMEWORK OCP4: OpenShift Container Platform 4 LI~

7 How the existing packet processing solutions performs on
container-based network function ?

@Jﬁfﬁ’%‘ﬂﬁ'ﬂgj 9

NATIONAL TSING HUA UNIVERSITY

Contribution

-1 To describe existing packet processing framework using in NFV
with container

- To evaluate the network performance after packet processing
framework applied in NFV with container

o To discuss and tuning the packet processing performance
impacting by network architecture.

@Ji’«fﬁ«%‘?’ﬁ'ﬂg’ 10

NATIONAL TSING HUA UNIVERSITY

Agenda

0 Introduction
7 Method

0 Experiments
0 Conclusion

@Jifﬁ«%‘ﬁ'ﬂg% 11

NATIONAL TSING HUA UNIVERSITY

Kubernetes Networking

7 We use Kubernetes to be our evaluation platform, since
Kubernetes is a very mature container manager

- Kubernetes does not provide any solution for handling
containers networking
0 It offloads networking to third-party certified plugins called CNI
plugins
1 Most CNI plugins use overlay network as default

1the acceleration is still needed

&) = b

NATIONAL TSING HUA UNIVERSITY

12

User Space CNF packet processing

7 Why user space?

0 It is easier to design a new algorithm if the packets are processed in

the user space

- User space accelerating Solutions

0 Vector Packet Processing (FD.io VPP)
m Lockless Parallelism

00 Data Plane Development Kit (DPDK)
1 Kubernetes Solutions
00 Contiy
-

&) - By

NATIONAL TSING HUA UNIVERSITY

Packet Vector

13

Contiv Network Architecture

o1 Contiv/VPP is a Kubernetes network plugin that uses FD.io VPP with DPDK as
the dataplane for packet forwarding between PODs in a Kubernetes

Kubemnetes Node Kubernetes Master

POD x e] :
POD 1 PODn 1+ K8s Control !
hostNetwork ' i Plane
O a R l :
: Contiv KSR

A

}

r b——>| Contiv ETCD
Contiv STN ' Kube Proxy

VPP

l——f@1— Contiv vSwitch

— — — r 1.

Linux Network Stack

i
VS == S S
data
terface S — nterface
=
— ' “——

@Jﬁ‘ tﬁ é‘ K'%;Z S s —)

NATIONAL TSING HUA UNIVERSITY

Kernel Space CNF packet processing

1 New Chapter of Kernel : A new just-in-time (JIT) feature

0 Developers can extend functions efficiently under the governments
to reduce failures

-1 Kernel space accelerating Solutions

00 eBPF/XDP = —
0 Kubernetes Solutions '? L g
0 Cilium

[ﬂeBPF Golibary ¥ | sendmsg()| | recvms a()

1 Silm

= https://github.com/danyangz/Slim ey

@ﬁ‘tﬁ %K,ﬂéﬁz’ Runtime

NATIONAL TSING HUA UNIVERSITY

- ﬁww Sockets ,

(@espr JIT Compiler } (TCP/IP)

Linux
Kernel

15

Cilium

1 The foundation of Cilium is eBPF

1 Because eBPF runs inside the Linux kernel, Cilium modules can apply

and updated without any changes to the application code or container
configuration

o8 08 os yoed 060
0 It is possible to use routing since Foly |/ Lo Bataein | | Maacaraer) b | Lo | | ade:
| l | l J
he routing modul
the routing module has updated SR
(ra () B @cn
Lo Ll '_I CITm IABRE <A |
W eBPF
Kernel I
B = 1 3~ Y s

10
NATIONAL TSING HUA UNIVERSITY

Solutions Comparison

Vector Packet
Processing, Data
Plane Development
Kit

Using VPP and DPDK to
Contiv User increase packet processing Layer2, Layer 3, ACI iptables
on user space

Using eBPF to provide new
Cilium Kernel Kernel module solution like
routing and security

Layer 2 by (default), BGP,

Layer 3 (optional) Kubeproy eBPF

&) = b

NATIONAL TSING HUA UNIVERSITY

17

Agenda

0 Introduction
0 Method

0 Experiments
0 Conclusion

@Jﬁfﬁ«%‘ﬁ'ﬂg% 18

NATIONAL TSING HUA UNIVERSITY

Experiments Setup

o The goal of our experiments . Packet Processing

0 We reduce the side effects from network equipment

1 We first estimate the baseline of host and VM, then compare
the solutions along with the network models individually

Container Container

Kubernetes

Container Container
VM A\

Kubernetes

@]ﬁ-f”ﬁ«%‘ﬁ.%ﬂif 19

NATIONAL TSING HUA UNIVERSITY

Testbed Specs

- Hardware
o CPU

m Two Intel Xeon Processor X5670 2.93-GHz processors
m Each processor had 12 physical cores, and hyper-threading was enabled.

0 Ram . 96GB
0 Software

O Linux kernel : 5.4.0-66- generic operating system Ubuntu 20.04.1
0 Docker : 19.03
O Kubernetes : 1.20

o Virtualization platform
O VM . KVM
0 Kubernetes CNI : Calico

@J}’«fﬁ«%‘ﬁi'ﬂ%{’ 20

NATIONAL TSING HUA UNIVERSITY

Scenario — Single VM/Host

* Kernel space acceleration can help to reach nearline in host, user space

acceleration is the worst
* The performance on vm is quite different as we thought, all performance
decreasing on VM, even Cilium is worse than container baseline

35

29.9

30

25

N N N
o (6] o

Bandwidth (Gbps)

)]

0

mHost mCalico mCalico(eBPF) mContiv m Cilium

28.8

CNI Types

@]5; (Aﬁ ,%A KangF on bare mental host

NATIONAL TSING HUA UNIVERSITY

Bandwidth (Mbps)

350

300

250

200

150

-
o
o

(&)
o

o

= VM to VM = Calico = Calico(eBPF) m Contiv = Cilium

287

196.5 196.25

CNI Types

Cross VM On Single Host

21

Scenario — Single VM with SR-IOV

According to our related work, VM can get acceleration by using hardware technique
Both VM and Container baseline has increased, but the trend is still the same

Since the container baseline has increased, Cilium still can’t reach container baseline but
better than Calico eBPF mode like host

350

300

250

200

150

100

Bandwidth (Mbps)

(&)
o

= VM to VM m Calico = Calico(eBPF) m Contiv = Cilium 1340 . . . -
m VM m Calico = Calico(eBPF) m Contiv = Cilium
287 1321
1320 Same trend:
1300 Calico > Cilium > Contiv
196.5 196.25

1280

2

£ 1260

2 1240

©

3

m 1220
1200

CNI Types CNI Types
Cross VM On Single Host Cross VM lIsolated On Single Host with SR-IOV

@]ﬁ—-f”ﬁ«%‘ﬁ.%% 22

NATIONAL TSING HUA UNIVERSITY

Scenario — Kernel Space Tuning

The MTU size impact significantly on network, the performance can sometime increased after
adjusting the MTU size

Due to eBPF programmable in Kernel, packet processing benefits from using native routing
instead of overlay network

350

300

250

200

150

100

Bandwidth (Mbps)

an
o

= VM(Raw) m Calico
= VM to VM m Calico = Calico(eBPF) m Contiv = Cilium = Cilium m Calico(eBPF+MTU 8000)
287 = Cilium(MTU 8000) m Cilium(Native Routing+MTU 8000)
350
300 287
196.5 196.25 R
g 0 220 221 2%
£ 200
3
©
S 150
s}
100
50
CNI Types 0
] . . CNI Types .
Cross VM On Single Host Different Cilium Network Architecture

&) = b

NATIONAL TSING HUA UNIVERSITY

23

Agenda

0 Introduction
0 Method

0 Experiments
1 Conclusion

@Jifﬁ«%‘ﬁ'ﬂg% 24

NATIONAL TSING HUA UNIVERSITY

Conclusion

1 Kubernetes CNI with the user space and the kernel space
severally impact the CNF packet processing performance

- Kernel Space Acceleration on the host or on the VM after
tuning can get best performance result

-1 User Space acceleration looks not helping in container packet
processing even with hardware support

7 We could perform more comparisons of network features on
container like security or IP management for further research

@Jﬁ«fﬁ«%‘ﬁ'ﬂg’ 25

NATIONAL TSING HUA UNIVERSITY

